CONTAS DE TAREFAS

Por JOSÉ CARLOS RODRIGUES DE FILHO | 19/06/2009 | Adm

Assista o vídeo: https://www.youtube.com/watch?v=Cp6u92vIp2I&list=PLMmDhrF6aCMQRFy8Ah2KU0YtOrq-5YJk8&index=33


MEDIDAS AGRÁRIAS (TAREFA)

Foi com ajuda de meu pai e meu (tio Antônio que faleceu) que fiz essa fórmula para se calcular tarefa, pois o processo que eles usavam era pouco preciso e lento, com essa fórmula que criei o novo processo é 100% preciso e super-rápido em no máximo 20 segundos já se sabe a resposta.

Eu editei o artigo para melhor explicar o cálculo de tarefas.

Livro relacionado:

Quando eu entendi o significado da palavra “cubada”, pronto era só isso que eu precisava para criar a fórmula, T = (LE + LOE)X(LI + LOI)/2500, leia abaixo o que significa cada termo da fórmula.

Convém ressaltar que eu apenas criei a fórmula, ou melhor, dizendo aperfeiçoei a fórmula uma vez que a comunidade aqui já usava a conta de tarefa a mais de 50anos atrás, só que não dividiam por 2500.

O problema é que as pessoas fazem a conta de tarefas somando um lado com o outro até mesmo para terrenos irregulares onde ela não funciona, eu pessoalmente faço contas de tarefas usando as fórmulas tradicionais da matemática no final eu divido por 625.

Como a comunidade aqui tem dificuldade em gravar várias fórmulas como do quadrado, retângulo, triângulo, trapézio, circulo etc. então talvez seja esse o motivo pelo qual eles fazem contas de tarefas dessa maneira somando um lado com o outro, a mais de 50 anos.

Como meu pai fazia conta de tarefa sem dividir por 2500 ele era obrigado a calcular as varas para saber quanto pagar ao trabalhador, com essa fórmula não precisa achar as varas, assim que divide por 2500 é só multiplicar pelo valor do serviço.

Quando chegava um trabalhador em casa para meu pai fazer o pagamento do serviço de plantação ou capinagem que eu via meu pai pagar sempre uma quantidade de dinheiro inteiro, ou seja, os pagamentos eram feito assim sempre em múltiplos de R$ 5,00 eu ria do tempo perdido entre o trabalhador e meu pai para ver quem tava certo, pois nenhum dos dois sabiam o dinheiro exatamente quanto era, meu pai sempre pagava com R 5,00 a mais eu perguntava porque você fez isso? Ele me dizia que era para acabar com a teima, foi quando eu me interessei pelo assunto e resolvi o problema.

 

TAREFA = É uma unidade de área, onde tem um quadrado com 25 varas de cada ladoEsta unidade de medida é muito usada principalmente no nordeste.

 

VARAS = É uma unidade de área, onde um retângulo tem sua altura, sempre 25 varas e que varia apenas a base, pois as pessoas têm dificuldade em se expressar quando estão diante de uma grandeza de duas dimensões, eles decoram sempre uma dimensão que é a altura, ou seja, o comprimento do terreno e o que interessa a eles é a base ou seja a largura.

Notação:

T=Tarefas.

V=Varas.

1 Vara vale 2,20 m.

1 Tarefa vale 625 v2.

LE=Lado esquerdo

LOE=Lado oposto ao esquerdo

LI=Lado inferior

LOI=Lado oposto ao inferior

 

Observação:

Lado oposto é o lado que não se liga a ele mesmo.

 

Exemplo:

Meia tarefa=0,5 ta Eles dizem: 12 varas e meia, já ficando implícito que sua lateral vale 25 V.

VEJA A FÓRMULA QUE DESENVOLVI PARA ELES. 

T = (LE + LOE)X(LI + LOI)/2500

Somo o lado esquerdo com o lado oposto ao esquerdo em seguida somo o lado inferior com o lado oposto ao inferior e multiplico o resultado entre si, por último divido tudo por 2500.

 

Suponha que o terreno dado para calcular seja este daqui:

Exemplo 01:
 

RESOLUÇÃO:

T = (LE + LOE)X(LI + LOI)/2500

T = ( 25 + 25 ) X (30 + 30 )/2500

T = ( 50 ) X (60 )/2500

T = 3000/2500

T =1,2 ta

Para saber a quantidade de varas que passou, tiro a parte inteira que é o número 1, ficando 0,2 que multiplico por 25.

V=0,2X25

V=5 va

Se eles quiserem saber, quanto vai pagar por algum serviço, basta multiplicar diretamente o preço da tarefa pelo valor achado , não necessita saber o número de varas.

Exemplo:

Preço da tarefa é R$ 1000,00 reais.

Devo pagar então D=1,2X1000

                               D=1 200,00 reais.

 

Suponha que o terreno dado para calcular seja este daqui:

Exemplo 02:

 

RESOLUÇÃO:

T = (LE + LOE)X(LI + LOI)/2500

T = ( 68 + 68 ) X (87 + 87 )/2500

T = ( 136 ) X (174 )/2500

T = 23 664/2500

T =9,4656 ta

Para saber a quantidade de varas que passou, tiro a parte inteira que é o número 9, ficando 0,4656 que multiplico por 25.

V=0,4656X25

V=11,64 va

Se eles quiserem saber, quanto vai pagar por algum serviço, basta multiplicar diretamente o preço da tarefa pelo valor achado, não necessita saber o número de varas.

 

Exemplo:

Preço da tarefa é R$ 1000,00 reais.

Devo pagar então D=9,4656X1000

                               D=9 465,60 reais.

Era problema deste tipo que quando chegava um trabalhador em casa para meu pai fazer o pagamento do serviço de plantação ou capinagem que eu via meu pai pagar nunca era em centavos, ou seja, exata ás vezes até mais de 2 reais, eu ria do tempo perdido entre o trabalhador e meu pai para ver quem tava certo pois nenhum dos dois sabiam o dinheiro exatamente quanto era.

Suponha que o terreno dado para calcular seja este daqui:

 

 

 

Atenção:

Eu criei esta fórmula   

T = (LE + LOE)X(LI + LOI)/2500, mas ela só deve ser aplicada para terrenos regulares .

Exemplo: 

■Quadrados.

▬Retângulos.

 

Ela não pode ser aplicada a terrenos irregulares como este daí abaixo, onde as medidas dos lados opostos são diferentes, pois a área fica bem maior que o tamanho dela normal. Tem muita gente ganhando dinheiro na venda de fazendas de áreas irregulares.
 

 Vamos calcular a área desse terreno usando a fórmula.

T = (LE + LOE)X(LI + LOI)/2500

T = ( 50 + 100 )X(100 + 50 )/2500

T = ( 150 )X(150 )/2500

T = 22500/2500

T=9 TAREFAS.

                        

Na verdade esse terreno só tem 8 tarefas, se a tarefa de terra fosse a R$ 1000,00 , significa dizer que quem comprou ele perdia R$ 1000,00.

Veja onde está o erro.

 

Vamos primeiramente calcular a área do terreno retangular.

T = (LE + LOE)X(LI + LOI)/2500

T = ( 80 + 80 )X(100 + 100 )/2500

T = ( 160 )X(200 )/2500

T = 32 000/2500

T= 12,8 TAREFAS.

Vamos agora calcular a área amarela como é de um triângulo e a área de um triângulo é a metade da área de um quadrado ou retângulo, logo usamos esta fórmula e no final dividimos a área encontrada por 2.

 

T = (LE + LOE)X(LI + LOI)/2500

T = ( 30 + 30 )X(40 + 40 )/2500

T = ( 60 )X(80 )/2500

T = 4 800/2500

T= 1,92 

Agora divido por 2 por que é um triângulo.

T = 0,96 tarefas.

Vamos agora calcular a área laranja como é de um triângulo e a área de um triângulo é a metade da área de um quadrado ou retângulo, logo usamos esta fórmula e no final dividimos a área encontrada por 2.
 

T = (LE + LOE)X(LI + LOI)/2500

T = ( 60 + 60 )X(80 + 80 )/2500

T = ( 120 )X(160 )/2500

T = 19 200/2500

T= 7,68 

Agora divido por 2 por que é um triângulo.

 

T = 3,84 tarefas.

 

Somando a área amarela com a área laranja, temos:

T = 0,96 tarefas + 3,84 tarefas

T = 4,8 tarefas

Subtraindo 4,8 da área total do retângulo temos que a área do terreno irregular é :

 I=12,8 – 4,8

 I= 8 tarefas.

        

Perceba que quem vendeu o terreno dizendo que tinha 9 tarefas, na verdade saiu ganhando uma tarefa no final das contas isso que o terreno foi pequeno na compra de um terreno maior o lucro é bem maior.

 

Agora  para quem já conhece as fórmulas da matemática veja como é bastante prático fazer o cálculo de tarefa.

 

●Terreno que tem a forma de um quadrado AQ=lxl

AQ=Área do quadrado.

l=lado

 

Resolução:

AQ=lxl

AQ=60x60

AQ=3600  ,agora é só dividir por 625, ficando AQ=5,76 tarefas

 

●Terreno que tem a forma de um retângulo AR=bxh

 AR=Área do retângulo.

 b=base e h=altura.

Resolução:

AR=bxh

AR=50x100

AR=5 000  ,agora é só dividir por 625, ficando AR=8 tarefas

 

●Terreno que tem a forma de um trapézio ATZ=(B+b)h/2

 ATZ=Área do trapézio.

 B=base maior b=base menor e h=altura.

 

Resolução:

ATZ=(B+b)h/2

ATZ=(100+70)40/2

ATZ=(170)40/2

ATZ=6 800/2

ATZ=3400, agora é só dividir por 625, ficando ATZ=5,44 tarefas.

Perceba que um terreno como este se fizer direto pela fórmula 

T = (LE + LOE)X(LI + LOI)/2500 dá 6,12 tarefas.

 

●Terreno que tem a forma de um triângulo AT=bxh/2

AT=Área do triângulo

b=base e h=altura.

AT=bxh/2

AT=50x50/2

AT=2500/2

AT=1250, agora é só dividir por 625, ficando AT=2 tarefas.

NUNCA SE ESQUEÇA A ÁREA DE UM TRIÂNGULO É SEMPRE A METADE DA ÁREA DE UM QUADRADO OU DE UM RETÂNGULO”.

 

●Terreno que tem a forma de um círculo AC=3,14 x r2.

AC=Área do círculo.

r=raio

 

Resolução:

AC=3,14 x r2

AC=3,14 x 102

AC=3,14 x 100

AC=314, agora é só dividir por 625, ficando AC=0,5024 tarefas